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Introduction 

Many studies of therapies with single subjects involve testing with a set of items each of which can be right or wrong on two or more 

occasions. In some studies, performance is probed frequently, perhaps in each therapy session. These studies typically (though not 

invariably) emanate from North America and eschew statistical analysis, relying instead on visual inspection of the data to detect 

significant trends (Franklin, Gorman, Beasley, & Allison, 1997). The reason for this suspicion of statistics is that it is well-known that 

analysis of such data is severely compromised by autocorrelation: performance on the test on one day may be related to performance 

on the previous test occasion. There are methods that allow the analyst to estimate and adjust for such autocorrelation effects, but 

these require at least 100 test occasions to be feasible, but these data are in practice never available (Franklin et al., 1997). In a few 

studies visual analysis methods are supplemented by use of statistical tests known to have very serious shortcomings (e.g. Tryon’s S 

see e.g. (Gorman & Allison, 1997))or have no clear statistical basis or interpretation (e.g. measures of effect size). 

The other group of studies (from, mainly, Europe and Australia) tend to use much larger number of items but probe performance on 

these much less often (e.g. just before and after each therapy phase) and use statistical tests for significance usually from the Kendall 

family (e.g. McNemar’s test). 

This paper aims to show that a test derived from this family (i) keeps the type I error rate to the desired level irrespective of any serial 

dependency in the data, and (ii) provides a powerful test of ordinal trend. Simulations are used to explore how the power of the test 

How the test is affected by (i) the number of test items, (ii) the number of test occasions, and (iii) the degree of serial dependence in 

the data is investigated. Simulations explore (i) comparison of changes for two sets of items tested on the same occasions, and (ii) 

comparisons for one set tested over two phases (e.g. pre-therapy and during therapy). 

 

Motivating the test. 

Mann’s test for trend calculates a statistic S: for each observation calculate the number of later observations that have a higher value 

minus the number with the lower value, and sum this across trials. Note that this requires only that trials are ordered, and makes no 

assumptions about spacing or linearity. The expected value of S across a series of trials under a null hypothesis of no trend is zero. 

Marascuilo & MacSweeney (1977)and Meddis (1984) extend this general concept to t tests with n items with a binomial response, but 

base their analyses on the permutational probabilities across trials assuming no serial dependence. Where there is serial dependence 

their analyses do not apply. However, whatever the degree of dependence, under the null hypothesis the mean value of S is zero with a 

symmetrical distribution, although its specific shape – and hence the standard deviation - depends on the degree of serial dependence. 

The calculation of S for an example dataset is illustrated in Box 1.  Given that the expected value of S is zero with an unknown but 



symmetrical distribution, its significance could be assessed with either a Wilcoxon one-sample test (that assumes only ordinality in the 

responses) or a t test (that assumes a near-normal distribution of mean Si when the null hypothesis is true).  Which of these tests 

performs better in the evaluation of mean Si  is tested in a simulation. 

----------------- Insert Box 1 about here -------------------------- 

 

Simulations: general method 

The performance of this statistic in assessing a trend was investigated in a series of simulations. These varied the number of tests t 

(with values of 2, 5 and 8), the number of items (10, 25, 50, and 100) and the degree of consistency. Consistency was expressed as a 

variable k for the odds ration of correct performance comparing accuracy on trial n for items that were correct on trial n-1 with 

accuracy for items that were incorrect on trial n-1. k=1 corresponds to no serial dependence (accuracy on trial n is independent from 

accuracy on the previous trial); larger values represent greater accuracy on trials where the previous item was correct than where it 

was incorrect. Varying the odds ratio was chosen because it guarantees that the probability correct for each item is always bounded by 

0 and 1. k was normally varied from 1 to 10, 50 and 100. 

Responses for individual items were generated randomly on the basis of these parameters. For the evaluation of the null hypothesis, i.e. 

there was no improvement, 100,000 pseudo-experiments were performed.  Evaluation of power was based on 10,000 pseudo-

experiments. 

Whether the t statistic or the Wilcoxon one sample test, which with just two tests was implemented as McNemar’s test was treated as 

an empirical issue. The Wilcoxon tests were evaluated with and without a continuity correction; an exact version of McNemar’s test 

was used but the equivalent of a version without a continuity correction was generated by using a mid-p correction. 

Note that the mean value of Si is equal to the mean trend across sessions (i.e. the gradient of the best-fitting regression line) if mean Si 

is divided by 6/)( 3 tt . The consequence is that (i) it is possible to calculate the mean rate of improvement over testing sessions, and 

(ii) confidence intervals on this mean rate of improvement, making no assumptions about linearity of improvement.  This provides an 

ideal measure for the effectiveness of therapy suitable for meta-analysis. It has the advantage that (i) it can take into account the 

number of items involved in therapy (a 50% improvement with 10 items is less than a 50% improvement with 50 items) (ii) it is not 

affected by item-consistency among items during a baseline period, and (iii) it makes no assumptions about the linearity of effects. 

 

Results 

(i) Evaluation of a single trend 

This deals with n items over t tests for detecting if there is significant improvement. Consistency is varied as described above. 

When the null hypothesis is true, i.e. there is no improvement, the t test consistently outperforms the Wilcoxon one-sample test. In the 

remainder of this paper results from a t test on mean Si will therefore be reported. As can be seen in Table 1, the type I error is 



consistently maintained at around or below the 5% level (the 95% CI from the binomial theorem is .0516 to .0493). With small 

numbers of items, and especially with high consistency, however, the probability of a type I error falls well below the .05 level 

suggesting a real loss of power. 

----------------- Insert Table 1 about here -------------------------- 

Investigations of power show that while power increases sharply with increasing numbers of items (n) there is a much less substantial 

effect of the number of trials (t). When k – intertrial consistency - is greater than around 3, power tends to decrease with more items 

(see Figure 1 illustrating just extreme values of consistency). 

(ii) Comparisons between two trends over the same period. 

As should be obvious from the previous simulations, when performance with two sets of items tested over the same period are 

compared, using a two sample t test, the test performs well across all variations of the parameters. Power is, as with a single test, 

reduced with small n. 

(iii) Comparison between trends over two periods. 

When experiments seek to compare the rate of improvement over two periods (say pre-therapy vs therapy), any comparison needs to 

assume some kind of ‘shape’ for the rate of improvement over time. The obvious ‘shape’ to assume is a linear rate of improvement, 

but this is very difficult to motivate as a null hypothesis as it assumes that the test items are equally graded in difficulty for the subject 

under investigation. It is hard to see how this assumption can be motivated given that the factors affecting item difficulty may vary 

between individual subjects, and the gradient of difficulty of items in a test are not known (and how that is to be established is not 

clear).  

Assuming that improvement is linear across the two phases, in simulations, the test performs reasonably well. Assuming other 

‘shapes’ of improvement, however, - for example, a sigmoid function – results in a very substantially increased rate of type I error. 

 

Conclusion 

This development of Mann’s and Marascuilo and MacSweeney’s test offers a method that can statistically evaluate and place 

confidence intervals on the rate of improvement during therapy. It does not, unlike other tests, depend on stochastic independence 

between trials. The simulations show that there is only benefit from multiple probes during therapy when inter-item consistency is low. 

Power is increased a great deal by more items. Therapy studies will have much greater statistical power if they employ large numbers 

of items tested on few occasions.  
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Box 1. Calculation of the statistic. 

 

There are n items tested on t tests. If item i on test j is correct xij=1 otherwise xij=0. The trials are weighted by λ coefficients with a 

spacing of 2 and summing to zero (more technically 12 tjj ). S for item i is the sum of the individual scores multiplied by the  λ 

coefficients: j

t

i
iji xS

1

. 

 

Worked example: 

Trial j 1 2 3 4  

Weighting λj -3 -1 1 3 Si 

Item i      

1 1 0 1 1 1 

2 0 0 1 1 4 

3 0 0 0 0 0 

4 0 1 0 1 2 

5 0 0 0 1 3 

6 1 0 1 0 -2 

7 0 0 1 0 1 

8 1 1 1 1 0 

9 0 1 1 0 0 

10 1 0 1 1 1 

Mean 0.4 0.3 0.7 0.6  

  Mean Si 1 

  Standard deviation Si 1.70 

  Standard error Si 0.54 

  t 1.86 

  Degrees of freedom 9 

  p (one tailed) 0.048 

  
Mean rate of improvement 
(items per session) 1.0 

 



Table 1. The probability of type I error using a t test, varying item consistency (k), the number of tests and the number of items.  

 

 Number of tests 

t 2 5 8 

k 1 10 50 100 1 10 50 100 1 10 50 100 

Number of items            

10 0.0397 0.0167 0.0062 0.0039 0.0324 0.0204 0.0115 0.0075 0.0480 0.0385 0.0206 0.0135 

25 0.0520 0.0471 0.0289 0.0186 0.0518 0.0485 0.0427 0.0373 0.0516 0.0505 0.0509 0.0470 

50 0.0511 0.0486 0.0506 0.0450 0.0509 0.0504 0.0505 0.0493 0.0506 0.0517 0.0508 0.0515 

100 0.0486 0.0519 0.0496 0.0495 0.0516 0.0508 0.0506 0.0504 0.0509 0.0501 0.0506 0.0498 

 

 



Figure 1.Illustrating that with high item-consistency power decreases with more tests.  
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Power and number of tests
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