CHAPTER

36

Contextual Influences on Category Concept Generation in Aphasia

Monica S. Hough
Robert S. Pierce
This study was part of a larger investigation that examined the access and organization of common and ad hoc categories in individuals with fluent and nonfluent aphasia. Common categories are groups of natural object concepts, such as "birds" and "fruits" that have graded structure (Rosch, 1975; Rosch and Mervis, 1975). Essentially, this indicates that all members of a category are not equally representative of the category, with some members being better examples than others. Representativeness has been based on normal subjects' ratings of how good an example a particular item is of a category. For example, "apple" consistently has been rated a better example of the category "fruit" than has "kumquat." The better examples have been identified as more typical representatives of a category. Grossman (1981) investigated fluent and nonfluent aphasic adults' sensitivity to graded structure in common categories. He observed that individuals with nonfluent aphasia were strongly anchored to the central portion of a category's referential field, primarily producing highly typical exemplars. Subjects with fluent aphasia named many out-of-category items, being relatively insensitive to category boundaries. However, they demonstrated some limits in their choice of a category's referent by producing out-of-set responses that were related to the target category.

In attempting to develop a more general theory of categorization, Barsalou (1983) investigated the structure of categories that are constructed for use in specialized contexts. These have been referred to as ad hoc categories and are considered instrumental to achieving goals. An example of an ad hoc category is "things not to eat on a diet." Ad hoc categories possess graded structures as salient as those structuring common categories. Ad hoc categories, however, are not as well established in memory as common categories because people have had more experience with common categories, establishing stronger associations to their category instances. In addition, ad hoc categories, unlike common categories, violate the correlational structure of the environment, containing category instances that share many properties with members of other categories.

Barsalou (1983) also examined the influence of context on categorization, specifically for ad hoc categories. He observed that relevant contexts prime ad hoc categories. That is, when normal individuals were presented instances of ad hoc and common categories, ad hoc category labels were as obvious as common category labels when primed by contexts indicating current goals. Context had no impact on ease of discovery of common category labels. The concepts for common categories were as available without context as with context because their instance-to-concept associations are more established in memory than those for ad hoc categories. It appears, then, that ad hoc categories are dependent on context for their realization, whereas common categories are context-independent.

The present investigation examined the influence of context on the generation of ad hoc and common category concepts in individuals with flu-
ent and nonfluent aphasia and non-brain-damaged adults. Our primary concern was whether adults with aphasia could utilize context to aid them in generating category labels, particularly for the goal-oriented ad hoc categories. We specifically examined category label accuracy, error types, and the relationship between standardized auditory comprehension level, naming scores, and experimental task performance.

METHOD

SUBJECTS

Twenty adults with brain damage who had sustained unilateral, single, left-hemisphere cerebrovascular accidents and exhibiting aphasia participated in this study. Ten neurologically intact control subjects, matched with the brain-damaged subjects on age and education level, were also examined. Brain damage was verified by neurological reports and clinical examination. Subject descriptive information is presented in Tables 36-1 and 36-2.

TASKS

All subjects with brain damage were administered portions of the Boston Diagnostic Aphasia Examination (BDAE) (Goodglass and Kaplan, 1983) and the Boston Naming Test (BNT) (Kaplan, Goodglass, and Weintraub, 1983). The subtests of the BDAE administered included oral commands, complex ideational material, repetition of words, repeating phrases, and cookie-theft picture description. The animal naming subtest from the BDAE was used as a naming screening test. A combination of several items from the reading comprehension of sentences subtest from the Western Aphasia Battery (WAB) (Kertesz, 1982) and the reading sentences and paragraphs subtest from the BDAE were used as a reading screening test. Ten of the items from the understanding sentences subtest from the Minnesota Test for Differential Diagnosis of Aphasia (MTDDA) (Schuell, 1965) were used as an auditory screening test. Individuals with aphasia who produced a minimum of three animals on the animal naming subtest and achieved at least 70 percent accuracy on both the reading and auditory screening tests were included as subjects in the study. The subjects with brain damage were assigned to fluent and nonfluent aphasic subject groups based on analysis of the BDAE Cookie Theft picture description task and a spontaneous speech sample by three speech pathologists familiar with neurogenic disorders. This resulted in 10 adults with fluent and 10 adults with nonfluent aphasia. Computation of an independent t-test between the group means on the summated BDAE subtests revealed no
<table>
<thead>
<tr>
<th>Subjects</th>
<th>Age</th>
<th>Years of education</th>
<th>Months post-CVA</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>57</td>
<td>10</td>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>18</td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>18</td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>12</td>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>12</td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>12</td>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>15</td>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>14</td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>9</td>
<td>58</td>
<td>12</td>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>12</td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Range</td>
<td>53–70</td>
<td>10–18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>61</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>5.12</td>
<td>2.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>16</td>
<td>6</td>
<td>Male</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>12</td>
<td>15</td>
<td>Male</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>13</td>
<td>8</td>
<td>Female</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>14</td>
<td>3</td>
<td>Male</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>12</td>
<td>41</td>
<td>Male</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
<td>12</td>
<td>36</td>
<td>Female</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>14</td>
<td>4</td>
<td>Male</td>
</tr>
<tr>
<td>8</td>
<td>73</td>
<td>14</td>
<td>13</td>
<td>Female</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>12</td>
<td>67</td>
<td>Male</td>
</tr>
<tr>
<td>10</td>
<td>53</td>
<td>10</td>
<td>2</td>
<td>Female</td>
</tr>
<tr>
<td>Range</td>
<td>53–76</td>
<td>10–16</td>
<td>2–67</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>67.9</td>
<td>12.9</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>6.98</td>
<td>1.99</td>
<td>21.57</td>
<td></td>
</tr>
<tr>
<td>Nonfluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>59</td>
<td>14</td>
<td>94</td>
<td>Male</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>14</td>
<td>14</td>
<td>Male</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>9</td>
<td>37</td>
<td>Female</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>14</td>
<td>9</td>
<td>Male</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>12</td>
<td>51</td>
<td>Male</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>10</td>
<td>3</td>
<td>Male</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>12</td>
<td>58</td>
<td>Female</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>12</td>
<td>34</td>
<td>Male</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>10</td>
<td>58</td>
<td>Female</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>12</td>
<td>45</td>
<td>Male</td>
</tr>
<tr>
<td>Range</td>
<td>46–75</td>
<td>9–14</td>
<td>3–94</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>63.5</td>
<td>11.9</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>9.07</td>
<td>1.79</td>
<td>27.41</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 36-2. CLINICAL TEST DATA

<table>
<thead>
<tr>
<th>Subjects</th>
<th>BNT<sup>b</sup></th>
<th>Aphasia classification</th>
<th>Oral commands</th>
<th>Complex<sup>c</sup></th>
<th>Word repetition<sup>d</sup></th>
<th>Repeating phrase<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>52</td>
<td>Anomic</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>Wernicke</td>
<td>15</td>
<td>7</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>Anomic</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>Conduction</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>Conduction</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>Conduction</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>Conduction</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>Anomic</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>Anomic</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>Anomic</td>
<td>15</td>
<td>8</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td>39.9</td>
<td></td>
<td>12.4</td>
<td>9</td>
<td>9.3</td>
<td>10.6</td>
</tr>
<tr>
<td>SD</td>
<td>12.4</td>
<td></td>
<td>3.57</td>
<td>2.16</td>
<td>.82</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Nonfluent						
1	50	Broca	15	10	10	16
2	25	Mixed	14	10	9	10
3	30	Mixed	11	7	9	7

(continued)
<table>
<thead>
<tr>
<th>Subjects</th>
<th>BNT<sup>b</sup></th>
<th>Aphasia classification</th>
<th>Oral commands</th>
<th>Complex<sup>c</sup></th>
<th>Word repetition<sup>d</sup></th>
<th>Repeating phrase<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonfluent (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Mixed</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>Broca</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>Broca</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>Broca</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>Broca</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>Broca</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>Mixed</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Range</td>
<td>7-50</td>
<td></td>
<td>8-15</td>
<td>5-12</td>
<td>8-10</td>
<td>4-16</td>
</tr>
<tr>
<td>Mean</td>
<td>31.2</td>
<td></td>
<td>12.9</td>
<td>9.3</td>
<td>8.9</td>
<td>8.3</td>
</tr>
<tr>
<td>SD</td>
<td>12.16</td>
<td></td>
<td>2.33</td>
<td>2.16</td>
<td>.88</td>
<td>3.53</td>
</tr>
</tbody>
</table>

^aBoston Diagnostic Aphasia Examination.

^bBoston Naming Test.

^cComplex ideational material.

^dRepetition of words.

^eRepeating phrases.
statistically significant difference between the fluent and nonfluent groups on auditory comprehension level \((t = .385; p > .35)\).

MATERIALS AND PROCEDURES

Sixteen ad hoc and eight common categories were presented to each subject. The common categories were 8 of the 10 categories for which Rosch (1975) established typicality norms. The ad hoc categories were 16 categories for which Hough (1988) developed typicality norms in a pilot study with normal middle-aged adults. Category labels are presented in Table 36-3.

Context vignettes were presented to each subject for half of the categories. Each context vignette described a character engaged in a goal-directed activity and that primed the subsequent respective category. None of the vignettes contained the category label for the respective item set. For both category types, vignettes were developed using the same framework as Barsalou (1983). A sample of a vignette for the category “things to take on a picnic” is presented in Table 36-4. Practice items were one common and one ad hoc category that were not part of the experimental stimuli. The common category was “carpenter’s tools,” and the ad hoc category was “things that can attack something.”

Four exemplars per category, consisting of two instances that were highly typical and two instances that were moderately typical, were pre-

TABLE 36-3. CATEGORY LABELS

<table>
<thead>
<tr>
<th>Common</th>
<th>Ad Hoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>Things that are poisonous</td>
</tr>
<tr>
<td>Sports</td>
<td>Things that can be leaned on</td>
</tr>
<tr>
<td>Fruits</td>
<td>Things that can be walked upon</td>
</tr>
<tr>
<td>Vehicles</td>
<td>Things to inventory at a store</td>
</tr>
<tr>
<td></td>
<td>Things to sell at a garage sale</td>
</tr>
<tr>
<td></td>
<td>Things to take on a vacation</td>
</tr>
<tr>
<td></td>
<td>Things that can be folded</td>
</tr>
<tr>
<td></td>
<td>Things to take from one’s house during a fire</td>
</tr>
<tr>
<td></td>
<td>Things that can be used for hitting</td>
</tr>
<tr>
<td></td>
<td>Things that can roll</td>
</tr>
<tr>
<td></td>
<td>Things that can fall on your head</td>
</tr>
<tr>
<td></td>
<td>Things to take on a camping trip</td>
</tr>
<tr>
<td></td>
<td>Things to take on a picnic</td>
</tr>
<tr>
<td></td>
<td>Things used to prop doors open</td>
</tr>
<tr>
<td></td>
<td>Things that have a smell</td>
</tr>
<tr>
<td></td>
<td>Things that can float</td>
</tr>
</tbody>
</table>
TABLE 36-4. SAMPLE VIGNETTE

THINGS TO TAKE ON A PICNIC

Sam wanted to spend time outdoors. It was a beautiful day so he packed up some items and went to a nearby park.

sent. Category instances were chosen based on Rosch's (1975) typicality norms and pilot data for the common and ad hoc categories, respectively. On a seven-point rating scale, an instance was considered highly typical if it received a mean typicality rating between 1 and 2. Moderately typical exemplars were defined by mean ratings between 2.50 and 3.50.

Subjects were asked to perform a categorizing operation in which they provided a category label for the 24 categories, each consisting of the four category instances of an ad hoc or common category. For half of the ad hoc and half of the common categories, a context vignette preceded category exemplar presentation. Context vignettes and category instances were presented auditorily through live voice and graphically. Subjects were informed that phrases as well as single words could serve as category labels. A 2-minute time limit was provided to respond to each of the exemplar sets. If the subject did not provide a category label after 1½ minutes, the investigator encouraged the subject to think of a category name. Subjects were permitted to produce category labels either verbally or graphically. Subjects' responses were audiotaped and/or graphically recorded by the investigator. Two versions of the task were developed so that ad hoc and common categories occurred equally in both context conditions.

RESULTS

The accuracy data, in the form of percentages, were analyzed in a three-way ANOVA with one between (group — normal, fluent, nonfluent) and two within (category type — ad hoc, common; context — with, without) subject variables. The results yielded statistically significant main effects for category type ($F[1, 27] = 234.835; p < .001$) and context ($F[1, 27] = 136.301; p < .001$) and a significant category type X context interaction ($F[1, 27] = 113.373; p < .001$). There was no statistically significant group effect.

Newman-Keuls analyses conducted on the statistically significant category type X context interaction yielded a highly statistically significant difference between contextual conditions for the ad hoc categories but not for the contextual condition difference for the common categories. These
results are shown in Figure 36-1. Although there were statistically significant differences between category types when context was presented, there was a much greater significant discrepancy between ad hoc and common categories without the contextual influence. Contextual condition means are presented in Table 36-5.

Subject errors were categorized into six types of responses, which included related, unrelated, hierarchically-off, perseverative, no response/don't know, and self-correct. A related response was one that was not the category label but was a related category label (e.g., "things for park" for the label "things to take on a picnic"). An unrelated response was one that was an unrelated, inaccurate response. A hierarchically-off response was one that was another exemplar of the category (e.g., "frisbee" for the category label "things to take on a picnic"). A perseverative response was one that had been provided for the previous set of exemplars. A no response/don't know response was one for which subjects did not respond or indicated that they did not know the answer. Self-corrections also were evaluated.

Figure 36-1. Mean percentage of correct responses for the ad hoc and common categories as a function of contextual condition.
TABLE 36-5. MEAN PERCENTAGE SCORES FOR THE AD HOC AND COMMON CATEGORIES AS A FUNCTION OF CONTEXT *

<table>
<thead>
<tr>
<th></th>
<th>Ad Hoc</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>81.25 (13.03)</td>
<td>95.00 (12.11)</td>
</tr>
<tr>
<td>No context</td>
<td>29.17 (19.51)</td>
<td>94.17 (12.60)</td>
</tr>
</tbody>
</table>

* Standard deviations are in parentheses.

Error responses were analyzed in a three-way ANOVA with one between (group) and two within (category type; error type) subject variables. Statistically significant main effects for the category type (F[1, 27] = 253.205; p < .001) and error type (F[5, 35] = 20.906; p < .001) and statistically significant group X error type (F[10, 135] = 9.194; p < .001), category type X error type (F[5, 135] = 30.128; p < .001), and group X category type X error type (F[10, 135] = 10.119; p < .001) interactions were observed.

Newman-Keuls analyses conducted on the statistically significant three-way interaction revealed statistically significant differences between groups in the mean number of errors for particular error types of ad hoc categories only. The results for the ad hoc categories are shown in Figure 36-2. Statistically significant differences between all groups were found for no response/don’t know, related, and unrelated error types, with normal subject producing more related and unrelated errors than both aphasic groups and nonfluent subjects producing more no response/don’t know errors than the other two groups. Both groups with aphasia produced more no response/don’t know errors than all other error types. Normal subjects produced more unrelated errors than all other errors and produced more related errors than any other error type aside from unrelated errors. For common categories, the only statistically significant finding was for fluent subjects, who produced more self-corrections than all other error types. Common category error results are shown in Figure 36-3.

Pearson product-moment correlations were conducted between contextual conditions for both category types, age, education, months post-onset, BNT performance, and summated BDAE auditory comprehension scores for the two aphasic groups. For the non-brain-damaged controls, correlations were conducted only between contextual conditions for both category types. The only statistically significant finding was a positive correlation between BNT scores and performance on ad hoc categories with context present for the fluent group (r = .762).
Figure 36-2. Mean number of errors for the ad hoc categories as a function of error type and group.

Figure 36-3. Mean number of errors for the common categories as a function of error type and group.
DISCUSSION

Our results indicate that adults with both fluent and nonfluent aphasia are able to utilize context effectively to prime category labels, particularly for categories that depend on an explicit context for their realization. Both normal and aphasic individuals showed a statistically significant increase in performance for ad hoc categories when context was introduced. For the fluent subjects, this performance was directly related to individuals' standardized naming abilities. As Barsalou (1983) had observed, the presence of context had no impact on category label generation for the common categories. Although common categories are not goal-derived, people are more familiar with these natural object concepts.

In regard to error production, performance for common categories was similar in all groups. For ad hoc categories, subjects with aphasia appeared to have more difficulty generating category labels than did normal subjects, in that they produced more no response/don't know errors. Normal subjects, on the other hand, generated more labels, producing more related and unrelated responses than both aphasic groups.

Individuals with fluent and nonfluent aphasia were similar to normal adults in their ability to see the relationship between category instances that reflect functional goals when context was present. This suggests that category structure and the ability to relate exemplars and goals within a contextual environment are intact for both types of aphasic adults. An individual's awareness of ad hoc categories appears to be based on previous experience and/or knowledge, with category construction extending what is already known. Ad hoc category utilization may involve a broad search of memory to generate a goal, since these categories have been found to violate the correlational structure of the environment (Barsalou, 1983). Chapey (1981) had indicated that adults with aphasia often have difficulty in communicative contexts requiring convergence on one correct response. Therefore, facilitation of categories, such as ad hoc, that are dependent on explicit context for their realization may be fruitful with linguistically impaired individuals because their construction does not require an individual to focus on a narrow response. Moreover, ad hoc categories are more functional than common categories in that they rely on previous experience and knowledge to accomplish the goals of daily living.

REFERENCES

DISCUSSION

Q = question; A = answer; C = comments.

C. This is not directly related to some of the data here, but it has to do with divergence, which I think you are looking at.

A. Yes, in sort of a way. It's an attempt at trying to get back to the efficacy of some of the issues Chapey had discussed in the 70s.

Q. I wonder if this has any application at all? It happens that I've had some patients to whom I've shown contextual pictures, and they can describe very well the things that are going on in those pictures. Then, you say to them, "Well, tell me what this brings to mind about your past or about other things, anything that might even be associated with it." They simply cannot do that task. You try to spend time with it and try to get that going. I wonder if maybe you are doing some of this with your ad hoc categories and if you would like to comment on this.

A. I definitely think you are tapping this knowledge with your ad hoc categories. For example, in the category "things to take on a picnic," aphasic subjects seem to retain that basic knowledge and experience when you give them the contextual information. The nonfluent subjects are not necessarily responding "things to take on a picnic," but they are saying "picnic" and are smiling because you have definitely triggered something off for them. Then ask the subjects, out of the situation, "Tell me some things to take on a picnic" a half an hour later, and the subjects are unable to respond to the request.
INDEX

ABAB withdrawal design, 381
Acoustic analyses and auditory comprehension, 415
Across-class generalization, 251–252
Action picture taking, 402
ACTS, See Auditory Comprehension Test for Sentences (ACTS)
ACTS-Reading/1 and Reading/2, 424–428, 429
Alzheimer’s disease, 259, 263, 267
American Speech-Language-Hearing Association (ASHA), 12, 370
Amyotrophic lateral sclerosis (ALS), 186, 191
Amytal procedures, 92–93, 95, 96, 100–101
Anomic aphasia, 272, 358–359
ANOVAs
 and category concept generation, 514, 516
 and computerized written naming task, 332
 and contextual influences on auditory comprehension, 412
 and effects of theme presentation, 494–495, 499–500
four-way, 494–495
one-way, 177, 362, 364
and real-time sentence processing, 289–292, 294
and right versus left limb performance, 151
and SPICA versus PICA, 142
three-way, 499, 516
AOS. See Apraxia of speech (AOS), speech kinematics in
Aphasia
 assessment and treatment of, ecological perspective on. See Ecological perspective to aphasia, concept of; Ecological validity in assessment and treatment of aphasia
definition of, 128
variability of, 2
Aphasia, slowly progressive. See Slowly progressive aphasia
Aphasic confrontation naming performance. See Perseveration in aphasic confrontation naming performance
Aphasic speakers. See Picture content, effects on descriptions
Aphasic versus nonaphasic stroke on language assessment, 46, 47
Aphasic versus normative data on language assessment, 45
Apraxia of speech (AOS), speech kinematics in
discussion of, 184–188, 190–193
literature on, 174–175
methods, 175–178
results of
duration, 178, 179
dysmetria, 182, 183, 184
peak velocity, 178, 180, 181
Associated Response category of BNT, 110
Ataxic subjects, 186
Attention deficits, effect of focal cerebral lesions on
abnormal, 72
definition of, 62
discussion on, 67–72
methods of, 63–65
results of, 65–68
studies, current, 62–63
studies, future, 72–73
Attention mechanisms, 62
Auditory comprehension, one-year recovery of
conclusions on, 474
discussion on, 476–478
method of, 464–466
neuroanatomy, 465–466
results of
 BDAE subtests, 467–470
 case presentations, 470–474
 neuroanatomical groups, 466–467
Auditory comprehension and reading in aphasia, qualitative and quantitative comparisons of
data on, 428–430
discussion on, 431–432
future investigations, 430
method of, 423–424
results of, 424–428
studies on, 422–423
Auditory comprehension of normally stressed targets by aphasic listeners, contextual influences of
discussion on, 419–420
findings of, 416–417
methods of, 409–412
results of
 acoustic analyses, 415
 auditory comprehension, 412–414

521
Auditory comprehension of normally stressed targets by aphasic listeners, contextual influences of results of — Continued
duration, 415
fundamental frequency, 415–416
relative duration, 416
reliability, 415
response time, 414–415
studies of, 408–409
Auditory Comprehension Test for Sentences (ACTS), use of for aphasic subjects, 423–428, 429
contextual influences on, 411, 412, 414, 416, 419
Reading Version of, 424–428, 429
Sentence Picture of the Reading Comprehension Battery for Aphasia (RCBA), 424–428
Baseline phase of computerized writing programs, 328–329
BDAE. See Boston Diagnostic Aphasia Examination (BDAE)
BEAM system, 43–44, 45, 58
Because Don't Know response with BNT, 109
Behavioral strategy change mechanism, 99
B/F VAT. See Bucco-Facial Visual Action Therapy (B/F VAT)
Binary contrasts, as subtests of LAT
Object/No-Object, 147
Segmented/Sequenced, 148
Simple/Complex, 147
BNT. See Boston Naming Test (BNT)
Boston Diagnostic Aphasia Examination (BDAE), 45, 77, 176, 272–273, 274, 278–279, 341, 345, 374, 381, 397
auditory comprehension and, 464,
467–470, 471–472, 474, 476
and category concept generation, 509
and contextual influences, 411, 412, 414, 416, 419
and effects of picture content, 448,
449–450, 456–460, 461, 462
and effects of theme presentation, 491,
492, 502
Boston Limb Apraxia Battery, 342
perseveration, time course of, 275, 276
Boston Naming Test (BNT)
and categorization concepts, 509
use with ERA adults, 354
use in language assessment, 45
Boston Naming Test (BNT), use with non-brain-damaged adults
administering, instructions for, 112
coding for, 111, 113–115
error rate of, 105–106
incorrect responses to, 107
normative data on, 105
other name items frequently given,
107–108
prompting subjects, 108
reliability
category, 109
inter- and intrajudge, 108–109
of revised procedures, 111
response coding for, 113–115
results, revisions based on, 109–110
scoring procedures for, 113–115
Brain-damaged adults, narrative theme organization on comprehension of
discussion on, 504–505
findings of, 502–503
method of, 491–494
results of, 494–502
Brain-injured subjects, performance on orienting attention tasks, 67–72
Brain metabolism, studies on, 76. See also Tomographic rCBF activation during phoneme detection
Broca’s aphasia patients
and auditory comprehension, 423, 478
case of, 23–24
and generalization research, 197,
208–210
and kinematic speech, 174, 181
nonfluent, 13
and perseveration, 272
and real-time sentence processing, 282,
290–292, 294. See also Verbs, activation of and real-time sentence processing
syntax training on sentence production, effect of, 250
Bucco-facial apraxia, Visual Action Therapy (VAT) for clinical implications of, 399–400
conclusions on, 400
discussion on, 404–406
global aphasia and, 396–397
method of, 397–398
procedure for BF/VAT
general instructions, 401
program hierarchy, 401–403
results of, 398–399
Bucco-Facial Visual Action Therapy (B/F VAT). See Visual Action Therapy (VAT) for bucco-facial apraxia
California Verbal Learning Test, 95
Category concept generation in aphasia,
contextual influences on
discussion of, 518, 519
general theory of categorization, 508
method of, 509–514
results of, 514–517
study on, 508–510
Cerebrovascular accident, left-hemisphere,
case of, 22–23
Clinical Aphasiaology Conference Proceedings,
378
Clinical-pathological correlations (CPC), 42
Clinician treatment for aphasia,
comparison with computer-clinician
assisted treatment
conclusions on, 316
discussion on, 318–319
methods
procedures and equipment, 300
subjects, 299
treatment, 299
results of, 300–316
multiple baseline alternating treatment
designs, 302–312, 313–314
CMLD, 287
Cognitive Laterality Battery, 95
Communication with aphasic adults. See
Communicative partners, use of for
aphasic adults
Communicative Abilities in Daily Living, 324
Communicative partners, use of for
aphasic adults
conclusions on, 16
method for, 13
results of, 14–16
stroke and aphasia, 12–13
Complex Ideational Materials Subtest of
BDAE, 435–436, 439–440
Comprehension and reading in aphasia,
auditory. See Auditory
comprehension and reading in
aphasia, qualitative and quantitative
comparisons of
Computed tomography (CT) scan, 34, 35,
36, 42, 58–59, 95, 100, 169,
175–176, 272, 275, 381. See also
Tomographic rCBF activation during
phoneme detection
and slowly progressive aphasia, 258–261
Computed tomography (CT) scan study of
recovery of auditory comprehension
after one year
conclusions on, 474
discussion on, 476–478
method of, 464–466
results of
auditory comprehension, 467–470
case presentations, 470–474
neuroanatomical groups, 466–467
Computer-clinician assisted treatment for
aphasia
conclusions on, 316
ANOVA with repeated measures,
summary of, 316
discussion on, 318–319
methods, 299–300
microcomputers, use of, 298–299
results of, 300–316
multiple baseline alternating treatment
designs, 302–312, 313–314
Computer program for written
confrontation naming in aphasia
discussion on, 334–337
results of, 331–332
studies on, 323–331
summary of, 333–334
Conduction aphasia, 272
description of, 380
discussion on, 389–393
method of, 381–383
oral reading treatment program, 380
results of, 383–388
study results, 388
subject used, 381
Confrontation naming performance,
aphasic, role of perseveration in
definition of, 272
data on, 275–276
discussion on, 277–279
methods of, 272–274
results of, 274
Confrontation naming test programs, computer program for
discussion on, 334–337
results of, 331–332
studies on, 232–331
summary of, 333–334
Contextual facilitation, sentence comprehension in
data on, 441–443
discussion on, 444–446
method of, 435–438
phenomenon of, 434–435
results of, 438–441
Contextual influences on auditory comprehension of normally stressed targets by aphasic listeners. See Auditory comprehension of normally stressed targets by aphasic listeners, contextual influences on
Contextual influences on category concept generation in aphasia. See Category concept generation in aphasia, contextual influences on
Contralateral cerebellum, glucose metabolic rates of, 38–39
Cookie Theft picture, 359, 383, 390
CPC, 42
Cross-modal lexical decision (CMLD), 287
Cross-modal orienting of attention. See Attention deficits, effect of focal cerebral lesions on
CT. See Computed tomography (CT) scan, use of
Cues and verbs, use of computer to present, 326–327
CVA, 22–23

Dale-Chall Readability Formula, 493
Denervation sensitivity, 99
Diaschisis, electrophysiological phenomenon of, 58
Discriminant function analysis, Porch’s, 118–119, 120–125. See also PICA discriminant function scores
Displacements in apraxic and normal adults (AOS). See Apraxia of speech, speech kinematics
Don’t Know response with BNT, 108–109
Drawing, use of as communicative aid discussion on, 352–355
measures, drawing outcome, 348–349
methods of, 341–343
rating scale of communicative effectiveness, 351
rating scale for ease of recognition, 351
results of, 343–345
studies on, 345–347
training strategies for use with ERA adult, 350
Dysarthria
ataxic, 188
secondary to Parkinson’s disease, 186
Dysmetrias, 182–184, 187–188. See also Apraxia of speech (AOS), speech kinematics in

Easy Street, 221
Easy Street Environments carry-over facilitators for, 27
development of, 24
setting events and, 25–26
treatment, topography of, 25
Ecological implications of volunteer-treated aphasia patients, 9
Ecological perspective to aphasia, concept of, 2
Ecological validity in assessment and treatment of aphasia
clinical cases on, 22–24
environment, stimulated, use of, 24–27
failures that threaten validity, 30
perspective, alternate, 20–22
perspective, broad, 20
Ecology, definition of, 2, 6
Electro cortical dysfunction in aphasia, comparison of language profiles and
discussion of, 54–56, 57–59
method of, 43–45
results of
aphasic versus nonaphasic stroke, 46, 47
aphasic versus normative data base, 45
global versus nonglobal aphasic, 46, 48
severe versus normal comprehension, 46, 51, 52
severe versus normal expression, 46, 53
severe versus normal fluency, 46, 49, 50
index

Electroencephalogram (EEG), use of, 42, 96, 100
delta frequency bands, 45
and FFT, 44–45
measurement technique, 44
spectral analysis, 45
and TBM, 43–44
Elicited and spontaneous oral-expressive
language in aphasia, comparison of.
See Oral-expressive language in
aphasia, comparison of spontaneous
and elicited
ERA. See Expressively restricted aphasic
(ERA) adults, use of drawing as
communicative aid for
Exemplars, training sufficient stimulus in
generalization research in aphasia,
210–214
Expressively restricted aphasic (ERA)
adults, use of drawing as
communicative aid for
discussion on, 352–355
measures, drawing outcome, 348–349
methods of treatment for, 341–343
rating scale for ease of recognition, 351
rating scale of communicative
effectiveness, 351
results of, 343–345
studies on, 345–347
training strategies for use with, 350
Fast Fourier transformation, 44
Fatigue, role of in perseveration, 275
FCT, 20, 24
Fluent aphasia, syntactic facility in
discussion of, 365–367
method of, 359–362
neuroimaging data on, 363–364
results of, 362–363
studies on, 358, 364
F-18 Fluorodeoxyglucose (FDG) PET
to examine glucose metabolic and
structural abnormalities, 32, 33–35, 258
in fluent aphasia, 363
Focal cerebral lesions, effect of on intra-
and cross-modal orienting of
attention
discussion of, 68–72
method of, 63–65
results of, 66–68

studies on
current, 62–63
future, 72–73
Folks Sentence Builder Kit, 242
Following action picture commands, 402
Four-way ANOVAS, 494–495
Frontal-parietal compartment of brain, 38
Functional brain lesions, 42
Functional communication treatment
(FCT), 20, 24
Fuzzy boundary errors, 370, 373–374,
375–376

General systems theory for aphasia
therapy, 151
Generalized research in aphasia
conclusions on, 217
definition of generalization, 196
discussion on, 220–222
methods of, 196
results of, 196–217
behaviors selected for training, 206–207
facilitating generalization, 197, 198–206
measurement variables, 207–208
methodological problems, 197
subject variables, 214–216
summary of, 216–217
treatment variables, 208–214
Generalization, use of to differentiate
learning and facilitation
across-class, 251–252
compensatory strategies, teaching, 248
discussion on, 254–256
learning approach, 248–249, 250
naming, treatment to improve, 250–251
stimulation approach, 248–250
summary of, 252
Generalization of Response Elaboration
Training (RET) effects
conclusions on, 240–241
description of, 224
discussion on, 242–245
methods of, 225–229
purpose of, 224
results of, 228, 230–239
summary of, 239–240
Global aphasia, and VAT for bucco-facial
apraxia, 396–397. See also Visual
Action Therapy (VAT) for bucco-
facial apraxia
definition of, 396
Global versus nonglobal aphasia in language assessment, 46, 48
Glucose metabolic and structural abnormalities in aphasic patients
discussion of, 35–40
methods
CT scan, 35
PET using FDG, 33–35
subjects, 32–33
results of, 35

Helm's Elicited Language Program for Syntax Stimulation (HELPSS) program, 23
Hemiplegia, 170
Hooper Visual Organization Test, 342
Hypermetabolism, measurement of, 266
Hypometabolism, 36, 266

Intracarotid Amytal Testing (IAT), 92–93, 95. See also Right hemisphere, role of in recovery from aphasia
Intra-modal orienting of attention. See Attention deficits, effect of focal cerebral lesions on
ITPA, Visual Sequential Memory subtest, 258

Kinematic speech in apraxia of speech (AOS)
data on, 184–188
discussion on, 190–193
method and procedures, 175–178
results
duration, 178
dysmetria, 182–184
peak velocity, 178–181

Labiomiallular kinematic durations. See Kinematic speech in apraxia of speech (AOS)
Language and memory in slowly progressive aphasia, 258
Language profiles and electrocortical dysfunction in aphasia, comparison of
data on, 54–56
discussion on, 57–59
method of, 43–45
results of aphasic versus nonaphasic stroke, 46, 47
aphasic versus normative data base, 45
global versus nonglobal aphasic, 46, 48
severe versus normal comprehension, 46, 51, 52
severe versus normal expression, 46, 53
severe versus normal fluency, 46, 49, 50

Language therapy, traditional, 27
Large picture matching, 401–402
LAT. See Limb apraxia test (LAT), use in aphasia
LCMRGI, 35
LHD. See Left-hemisphere damaged subjects and LAT
Left cerebrovascular accident (CVA), 381
Left- and right-hemispheric rCBF activation during phoneme detection
Left-hemisphere brain damage, effects of. See Narrative theme organization on comprehension of adults with brain damage
Left-hemisphere-damaged (LHD) subjects, and LAT, 146, 149–150, 151–153, 154. See also Limb Apraxia Test; Limb Apraxia Test, short form
comparison of three groups, 151
performance of control, 151–153
right versus left limb performance, 151, 158
Left-hemisphere structural damage, on CT scan, 36, 37
Left-hemispheric lesions, and attention deficits, 62, 63, 67–72
Lesions, cerebral. See Attention deficits, effect of focal and cerebral lesions
Limb apraxia test (LAT)
data on, 153–154
discussion on, 155–159
methods of, 147–151
results of LHD groups, comparison of, 151
performance of control, RHD and LHD groups, 151–152
right versus left limb performance, 151
subtests characteristics, relationships among, 153
Limb Apraxia Test (LAT) short form
 data on, 168
discussion on, 168–171
limitations of, 152
method of
cross-validation study, 165–166
short forms, identification of, 163–165
subjects, 162
results of, 166–167
Lingual kinematics in apraxic speakers. See
 Kinematic speech in apraxia of
speech (AOS)
Linguistic manipulations, techniques for,
 408. See also Auditory
 comprehension of normally stressed
targets by aphasic listeners,
contextual influences of
Linguistic perspective on verbs, 283–286.
 See also Verbs, activation of and
 real-time sentence processing
Local cerebral metabolic rate for glucose
 (LCMRGl), 35
Loose training approaches in
 generalization research, 208–209
Low-level aphasisic subjects, 374
Magnetic resonance imaging (MRI), 42,
 58, 95, 100, 169
Matrix training, 211, 214
Mediation strategies, training, in
 generalization research, 214
Melodic Intonation Therapy (MIT), 92. See
 also Right hemisphere, role in
 recovery from aphasis
Microcomputers, in rehabilitation of brain-
damaged patients, 298–299. See also
 Computer-clinician assisted
 treatment for aphasis
Minnesota Test for Differential Diagnosis
 of Aphasis (MTDDA)
 and category concept generation, 509
 and effects of picture content, 448, 449,
 450, 456–459, 460, 462
Misperception response of BNT, 109
MIT, 92. See also Right hemisphere, role in
 recovery from aphasis
Modular therapy, 24
MRI, 42, 58, 95, 100, 169
MTDDA. See Minnesota Test for Differential
 Diagnosis of Aphasis (MTDDA)
Multiple Attempts with BNT, 108–109
Multiple baseline alternating treatment
 design for clinician and
 microcomputer, 302–314. See also
 Computer-clinician assisted
 treatment for aphasis
Mute patients, 95, 96
Narrative theme organization on
 comprehension of adults with brain
damage
discussion on, 504–505
findings of, 502–503
method of, 491–494
results of, 494–502
Natural communication, 21
Neuroanatomical groups, and auditory
 comprehension, 466–467
Neuroanatomy, and auditory
 comprehension, 465–466
NeuroECAT scans, 33–35, 363
Neuroimaging and slowly progressive
 aphasia, 258–259
case histories on, 259–262
No Response tasks of BNT, 109
Nonaphasic versus aphasisic stroke on
 language assessment, 46, 47
Non-brain-damaged adults, use of BNT
 for. See Boston Naming Test, use
 with non-brain-damaged adults
Non-brain-damaged speakers. See Picture
 content, effects on descriptions
Nonverbal communication in aphasis, use
 of Limb Apraxia Test (LAT) short
 form in studies of
 data on, 168
discussion on, 168–171
limitations of, 152
method of
cross-validation study, 165–166
short forms, identification of, 163–165
subjects, 162
results of, 166–167
Normative versus aphasisic data on
 language assessment, 45
Object/No-Object subtest of LAT, 147, 164
Object-to-picture matching, 401
Object-to-picture pointing, 402
Object use training, 402
Off Task response with BNT, 108–109
One-way ANOVAS, 177, 362, 364
Oral-expressive language in aphasia, comparison of spontaneous and elicited
discussion on, 483–488
methods, 480–482
results, 482–483
Oral reading treatment program, 380
Other Name category of BNT, 110

PACE
and communicative partnerships, 13, 14, 15, 24
format, modifying for ERA adults, 340, 342–343, 352
Pantomime expression test, 157
Pantomimed gesture, 402–403
Parkinson’s disease, 260, 264
Partners, communicative. See Communicative partners, use of for aphasic adults
Perseveration in aphasic confrontation naming performance
data on, 275–276
description of, 272
discussion on, 277–279
methods of, 272–274
results of, 274
PET. See Positron emission tomography (PET)
Phoneme detection. See Tomographic rCBF activation during phoneme detection
Phonemic perseverations, 273, 274, 277
PICA. See Porch Index of Communicative Ability
PICA, comparison with SPICA
conclusions on, 138–140
data on, 136–138
discussion on, 141–144
problem of, 133
procedures and methods of, 133–135
results of, 135–136
PICA discriminant function scores
description of, 118
discussion on, 125–129
studies on, 119–125
Pick’s disease, 259, 267
Picture content, effects on descriptions
discussion on, 460–462
materials for, 480
procedures for, 452, 480
results of, 452–460
subjects, 448–450, 451
Picture-to-object matching, 401
Picture-to-object pointing, 402
Porch Index of Communicative Ability (PICA), 13, 22, 23, 32, 101, 148, 175, 225, 298, 299–301, 316, 327, 341, 345, 396. See also PICA discriminant function scores
and auditory comprehension and reading, 422
comparison of to SPICA. See PICA, comparison with SPICA
and contextual influences on auditory comprehension, 411, 412, 414, 416, 419
and spontaneous and elicited oral-expressive language, 480, 482–483, 487
Positron emission tomography (PET), 42
use of to examine F-18 fluorodeoxyglucose (FDG), 33–35
and slowly progressive aphasia, 258–259
and syntactic studies, 358, 363
Posner’s paradigm, 64
Post-baseline phase of computer writing programs, 329
Pragmatic therapy, 24
Programming common stimulus, 209–210
Progressive aphasia. See Slowly progressive aphasia
Psychosocial wellness, 13

Raven’s Coloured Progressive Matrices (RCPM), 175, 258
and effect of theme presentation, 491–492, 502, 504–505
Raven’s Progressive Matrices, 95
and slowly progressive aphasia, 259, 260, 281
rCBF, 95
RCBA. See Reading Comprehension Battery for Aphasia (RCBA)
RCPM. See Raven’s Coloured Progressive Matrices (RCPM)
Reaction time (RT) paradigm, 62, 64, 66, 67–68
Reading and writing activities, computer program for. See Written confrontation naming in aphasia, computer program for
Reading Comprehension Battery for Aphasia (RCBA), 45
Reading Version of ACTS, 424–428, 429
Real-time sentence processing in aphasia, activation of verbs in discussion on, 293–296
linguistic perspective on, 283–286
processing perspective on, 286–288
verb complexity, notion of, 286
verb complexity, study of, 286–288
study on, present, 288–292
Regeneration mechanism, 99
Regional cerebral blood flow (rCBF), 95.
See also Tomographic rCBF
activation during phoneme detection
Related Name responses in BNT, 107,
108–109, 110
Repetition deficit, and conduction aphasia, 380
Representational gesture for absent object, 403
Research in aphasia, generalized. See Generalized research in aphasia
Response coding in BNT, 113–115
Response Elaboration Training (RET), 211, 214
Response Elaboration Training (RET) effects, generalization of conclusions on, 240–241
description of, 224
discussion on, 242–245
methods of, 225–229
purpose of, 224
results of, 228, 230–239
summary of, 239–240
Response time, verbal, 414–415
RET, 211, 214
Revised Token Test (RTT), 175, 410, 412, 416, 419
RHD. See Right-hemisphere-damaged (RHD) subjects, and LAT
Right hemisphere, role in recovery from aphasia
data on, 96–99
discussion on, 100–101
Intracarotid Amytal Testing (IAT) and, 92–93
Melodic Intonation Therapy (MIT), 92
procedure for 95–96
subjects for, 93–94
Right-hemisphere brain damage, effects of. See Narrative theme organization on comprehension of adults with brain damage
Right-hemisphere-damaged (RHD) subjects, and LAT, 142, 149, 151–153, 154. See also Limb Apraxia Test (LAT); Limb Apraxia Test, short form performance of control and, 151–153
right versus left limb performance, 151, 158
Right-hemispheric lesions, and attention deficits, 67–72
Right hemispheric rCBF, 79–81. See also Tomographic rCBF activation during phoneme detection
Right limb, versus left limb LAT performance, 151
RT, 62, 64, 66, 67–68
RTT, 175, 410, 412, 416, 419
Seashore rhythm test, 258
Segmented/Sequenced subtest of LAT, 148, 164
Seizure, focus of, definition of, 96
Selective Reminding Test, 45
Semantic categorization task, use of discussion on, 377–378
findings on, 375–376
method of, 371–373
results of, 373–375
system of, 370–371
Semantic perseveration, 273
Sentence comprehension in contextual facilitation
data on, 441–443
discussion on, 444–446
method of, 435–438
phenomenon of, 434–435
results of, 438–441
Sentence Picture of the Reading Comprehension Battery for Aphasia (RCBA), 424–428
Sequential modification as method in generalization research, 214
Severe versus normal comprehension in language assessment, 46, 51, 52
Severe versus normal expression in language assessment, 46, 53
Severe versus normal fluency in language assessment, 46, 49, 50
Short form Limb Apraxia Test (LAT). See Limb Apraxia Test (LAT) short form

Short PICA (SPICA), comparison with PICA

conclusions on, 138–140
data on, 136–138
discussion on, 141–144
problem of, 133
procedures and methods of, 133–135
results of, 135–136

Simple/Complex subtest of LAT, 147

Single photon techniques (SPECT) of regional cerebral blood flow (rCBF), 42, 58. See also Tomographic rCBF activation during phoneme detection

Slowly progressive aphasia

definition of, 269–270
data on, 261–264
discussion on, 266–270
methods of

cases of, 259–261
language and memory, 258
neuroimaging, 258–259
summary of, 264–265

Small picture matching, 402

Speech pathologist-treated patients versus volunteer-treated patients, 6–9

SPECT, 42, 58

Spontaneous and elicited oral-expressive language in aphasia, comparison of
data on, 483–484
discussion on, 484–488
methods, 480–482
results, 482–483

Spouses of aphasics, 15

Stress

definition of, 408
effect of on auditory comprehension, 408–409. See also Auditory comprehension of normally stressed targets by aphasic listeners, contextual influences of

Stroke, and impact of aphasia, 12–13

Structural and glucose metabolic abnormalities in aphasics

data on, 35–38
discussion on, 38–40
methods

CT scan, 35
PET using FDG, 33–35

subjects, 32–33
results of, 35

Structural brain lesions, 42

Structural-functional Speech System

Evaluation (S-F), 175

Subcortical aphasia, 272

Substitution mechanism, 97

Syntactic facility in fluent aphasia

discussion of, 365–367
methods, 359, 360, 361–362
neuroimaging data on, 363–364
results of, 362–363

studies on, 358, 364

Syntax, studies treating, 250–251. See also Generalization, use of to differentiate learning and facilitation

TAP, 276

TBM, 42–44, 54–56

Temporoparietal cortex, 38. See also Glucose metabolic and structural abnormalities

Test, psychometric properties of, 100–101

Theme presentation, effects on comprehension and interpretation of narrative discourse in adults with brain damage. See Narrative theme organization on comprehension of adults with brain damage

Three-way ANOVAS, 499, 516

TIA, 58–59, 101

Token Test, 45

Tomographic rCBF activation during phoneme detection

data on, 80–86
discussion on, 87–89
examples of rCBF uptake, 82–85
methods of, 76–77
results of, 77–80

studies of, 76

Topographic brain mapping (TBM), 42–44, 54–56. See also Language profiles and electrocortical dysfunction in aphasia, comparison of

Trailmaking, 95

Transcortical aphasia, 272

Transient ischemic attack (TIA), 58–59, 101

Treatment of aphasia

ecological perspective on, 2
use of trained volunteers for, 6–10
Index

Treatment of Aphasic Perseveration (TAP), 276
Treatment phase of computerized writing programs
test program, 331
treatment program, 329–330
T-unit, description of, 480–481

Upper limb apraxia. See Limb apraxia test (LAT)
Unrelated Name response with BNT, 109, 110

VAT, 340
Velar kinematics in apraxic speakers. See
Aphasia of speech (AOS), speech kinematics in
Velocities. See Kinematic speech in apraxia of speech (AOS)
Verb complexity, notion and study of, 286–288
Verbal apraxia, 404
Verbal complexity
clinical application of, 295–296
and ecological perspective of aphasia, 2
notion of, 286
study of, 286–288
Verbal disruptions, and ecological perspective of aphasia, 2
Verbs, activation of and real-time sentence processing
discussion on, 293–296
linguistic perspective on, 283–286
processing perspective on, 286–288
study on, present, 288–292
Vicariation or equipotentiality mechanism, 97, 99
Visual Action Therapy (VAT) for buccofacial apraxia
clinical implications of, 399–400
conclusions on, 400
discussion on, 404–406
global aphasia and, 396–397
method of, 397–398
procedure for BF/VAT, 401–403
results of 398–399
Visual Action Therapy (VAT) for ERA adults, 340
Visual Misperception response with BNT, 107, 108–109
Volunteer Connection, 15
Volunteers, trained in aphasia treatment conclusions on, 10
data on, 6–7
ecological implications of, 9
enigmatic evidence for, 8–9
misinterpretations of, 7–8
rationale for, 6

WAB. See Western Aphasia Battery (WAB)
WAIS. See Wechsler Adult Intelligence Scale (WAIS) Verbal and Performance IQs
Wechsler Adult Intelligence Scale (WAIS)
Verbal and Performance IQs, 95
WAIS Block Design and ERA adults, 342, 345
WAIS-R Block Design, slowly progressive aphasia, 258
Wernicke's aphasia
and auditory comprehension, 464–465, 467, 476
data on, 294
and kinematic speech, 187
and perseveration, 272
and sentence comprehension in context, 445
and studies of syntactic competence, 358, 359–360, 363, 364, 365
Western Aphasia Battery (WAB), 32, 93
and category concept generation, 509
and effects of picture content, 448, 449, 450, 456–460
and fluent aphasics, 359
and slowly progressive aphasia, 258
and RET, 225
Wilcoxon Signed-Ranks test, 343
Word Fluency Measure (WFM), 175
Written confrontation naming in aphasia, computer program for
discussion on, 334–337
results of, 331–332
studies on, 323–331
summary of, 333–334
Wrong Part responses with BNT, 107, 108–109

Xenon-133 SPECT technique, 76