CHAPTER 10

Reliability and Classification of Writing and Drawing Performance in Mildly Aphasic Patients and Normal Individuals

Roberta J. Elman
Jan A. Roberts
Robert T. Wertz
Writing is usually impaired following left-hemisphere damage that results in aphasia (Benson, 1979; Kertesz, 1979; Rosenbek, LaPointe, and Wertz, 1989). Aphasic writing is characterized by spelling errors (Leischner, 1969; Marcie and Hecaen, 1979; Goodglass, 1981), agrammatic or paraphasic style (Leischner, 1969; Goodglass, 1981), and crossed-out letters or overwriting (Marcie and Hecaen, 1979).

Keenan (1971) reported that writing sentences to dictation is a good means to detect mild aphasia, but he also observed that writing by some normal subjects was judged as being aphasic. Hansen and McNeil (1986) and Hansen, McNeil, and Vetter (1987) demonstrated that normal writing is not “error free.” Other than these reports, there is limited information on the differences and overlap between normal and mildly aphasic writing.

Some suggest that drawing may be compromised following left-hemisphere brain damage (Bay, 1962; Benton, 1979). Benson and Barton (1970) state, “. . . drawing, by itself, is a reasonably good test for detecting brain damage” (p. 40). Drawings by left-hemisphere-damaged patients have been described as simplistic (Arrigoni and De Renzi, 1964; Swindell et al. 1988), having reduced fluency (Jones-Gotman and Milner, 1977), deficient perspective (Hatfield and Zangwill, 1974), and not being fully communicative (Lyon and Sims, 1986). There is also evidence that left-hemisphere damage interferes with the patient’s ability to plan his or her drawings (Warrington, James, and Kinsbourne, 1966; Hecaen and Assal, 1970).

Normal individuals also may have difficulty when asked to draw pictures, especially those requiring perspective (Arrigoni and De Renzi, 1964). In addition, non-brain-damaged subjects have shown perseveration on drawing fluency tasks (Jones-Gotman and Milner, 1977).

Writing and drawing are used to assess aphasic performance. However, errors in normal writing and drawing suggest that it may be difficult to differentiate normal individuals from mildly aphasic patients. Therefore, we sought answers to the following questions:

1. Can speech-language pathologists determine the presence of mild aphasia in a writing sample?
2. Can speech-language pathologists determine the presence of mild aphasia in a drawing sample?
3. How reliable are speech-language pathologists’ numerical scores for the written paragraph task in the Western Aphasia Battery (WAB) (Kertesz, 1982)?
4. How reliable are speech-language pathologists’ numerical scores for the drawing task in the WAB?
TABLE 10-1. DEMOGRAPHIC FIGURES FOR THE TWO EXPERIMENTAL GROUPS

<table>
<thead>
<tr>
<th></th>
<th>Aphasic subjects</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x})</td>
<td>SD</td>
</tr>
<tr>
<td>Age (years)</td>
<td>62.33</td>
<td>8.55</td>
</tr>
<tr>
<td></td>
<td>(50–83)</td>
<td></td>
</tr>
<tr>
<td>Education (years)</td>
<td>12.69</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>(8–20)</td>
<td></td>
</tr>
<tr>
<td>Aphasia quotient (WAB)</td>
<td>89.47</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td>(81.6–93.7)</td>
<td></td>
</tr>
</tbody>
</table>

METHODS

Fifteen aphasic patients participated in the study. All were right-handed, native English speakers who had sustained left cerebral vascular damage. And all were mildly aphasic with WAB aphasia quotient (AQ) between 80 and 93.8.

Fifteen normal control subjects were matched for age with the aphasic patients. All control subjects were right-handed, literate, native English speakers, reported no history of a neurologic and/or speech-language disorder, and scored above the normal cutoff (93.8) on the WAB. Descriptive data for both groups are shown in Table 10-1.

Twelve speech-language pathologists with at least 2 years of postgraduate experience working with neurogenic communicative disorders served as judges. They were asked to score and classify the aphasic patients’ and normal individuals’ written language samples and drawings. Thirty randomized writing samples (15 aphasic and 15 normal) and 30 randomized drawing samples (15 aphasic and 15 normal) were judged. Each judge was instructed about the nature of the experiment and provided specific information as described in the WAB for scoring the writing and drawing samples.

WRITTEN PICTURE DESCRIPTION

To focus on language and avoid differences in motor control, a typed transcript of the WAB written picture description (section VI.B) was prepared for each aphasic and control subject. Reliability of the transcrip-
tion was not calculated. Transcripts reflected spelling, punctuation, and the number of words per line. Directions for calculating the numerical score (maximum of 34) were taken verbatim from the WAB test booklet. In addition to the numerical score, judges were asked to determine, from the writing sample, whether each subject was aphasic or normal.

DRAWING PERFORMANCE

Seven drawings from the WAB (circle, cube, square, clock, tree, house, and person) were obtained from each aphasic and control subject. Judges used the WAB test booklet instructions to score each picture (combined score of 27). In addition, judges were asked to determine from the drawing performance whether each subject was aphasic or normal.

RESULTS

INTRAJUDGE RELIABILITY

Intrajudge reliability was obtained by having two of the judges rescore the writing and drawing samples. Point-by-point agreement was 83 percent or better for numerical scores in the writing and drawing samples and 88 percent or better for aphasic subject versus normal subject classifications.

CLASSIFICATION RESULTS

There were 360 judgments based on writing samples (12 judges, 30 subjects). One hundred eighty of these could have been correct by chance. Figure 10-1 shows that 150 of 180 judgments for aphasic subjects and 155 of 180 judgments for normal subjects were correct. This is significantly better than chance (chi-square = 173.74, df = 1, p < .001) (Siegel and Castellan, 1988).

There were 356 judgments based on drawing performance (4 judgments were unavailable owing to rater error). Figure 10-2 shows that 137 of 177 judgments for aphasic subjects and 118 of 179 judgments for normal subjects were correct. This is significantly better than chance (chi-square = 67.67, df = 1, p < .001) (Siegel and Castellan, 1988).
Fig. 10-1. Judges' classifications of aphasic and normal subjects on writing performance.

Fig. 10-2. Judges' classifications of aphasic and normal subjects on drawing performance.

A kappa analysis of rater classifications (Siegel and Castellan, 1988) for the 30 subjects was performed. Results of this analysis indicated moderately strong agreement among raters for writing performance ($K = 0.62, Z = 25.54, p < .001$) and for drawing performance ($K = 0.56, Z = 23.91, p < .001$).
Table 10-2. Examples of Written Picture Descriptions and How They Were Classified

<table>
<thead>
<tr>
<th>Classification</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasia as aphasia</td>
<td>They are large tree in front of the house and they are people /\\\""\</td>
</tr>
</tbody>
</table>
| Aphasia as normal | There is a large tree in the picture.
A boy is sitting and reading.
The girl is pouring a drink in the cup.
The car is parked in the space for it.
The house is basically under the trees.
The girl has a radio turned on.
There is a tall flag. |
| Normal as normal | The scene here shows a family on a vacation. The family includes at least a mother and father and son. The family appears to be enjoying a beautiful day beside a lake. The mother and father are enjoying the end of a picnic lunch while their son flies a kite. Their dog also seems to be having a good time watching the boy flying a kite. |
| Normal as aphasia | The Sail Boat is in watter.
Boy Sailing Kite
Man & woman is having a picknick
Boy is diping up water by Eade of Lak |

Note: A slash represents a crossed out letter.

Judges were more accurate when classifying writing performance than drawing performance. Figures 10-1 and 10-2 show that classification of aphasic patients was 83 percent correct for writing and 77 percent for drawing. Classification of normal subjects was 86 percent correct for writing and 66 percent correct for drawing.

Some subjects were consistently classified correctly and some were consistently misclassified on the written picture description task (Table 10-2). Similarly, some were consistently classified correctly and some were consistently misclassified on the drawing task (Figs. 10-3 and 10-4).

INTERJUDGE NUMERICAL SCORING RELIABILITY

Kendall's coefficient of concordance (Siegel and Castellan, 1988) indicates a moderately high degree of concordance among judges' scoring
of the writing samples ($W = 0.68$, chi-square $= 236.64$, df $= 29$, $p < .001$). Interjudge reliability for drawing was calculated using a single score (summation of the seven drawing scores for each subject). Concordance was $W = 0.81$, chi-square $= 281.88$, df $= 29$, and $p < .001$. Although the concordance of rankings was relatively high among
judges, variability for individual subjects was evident (Figs. 10-5 to 10-8). This was found to a lesser degree for writing scores in normal subjects as compared to writing scores in aphasic patients. Variability was evident in drawing scores for both normal and aphasic subjects.
Fig. 10-5. Writing score range and means for 15 aphasic subjects.

Fig. 10-6. Writing score range and means for 15 normal subjects.
Fig. 10-7. Drawing score range and means for 15 aphasic subjects.

Fig. 10-8. Drawing score range and means for 15 normal subjects.
DISCUSSION

Our results indicate that speech-language pathologists are relatively good at determining the presence of mild aphasia from a writing or drawing sample. There were misclassifications, but we have not sought specific reasons for them. The literature suggests misclassifications may be explained by age (Ulatowska et al., 1985), education (Benson and Cummings, 1985; Duffy et al., 1976), literacy (Lecours et al., 1987), profession (Leischner, 1969; Benson and Cummings, 1985), or artistic ability (Gardner and Winner, 1981). Further, Hansen and McNeil (1986) indicate that normal performance is not error-free, and Rosenbek (Hansen, McNeil, and Vetter, 1987) observed that not all errors are caused by aphasia. Until the influence of premorbid factors on aphasia and the range of normal performance are established, we caution not to consider all errors as pathologic.

Further, our results indicate that speech-language pathologists are relatively reliable in scoring writing and drawing tasks on the WAB. However, the range in scores for some subjects, normal and aphasic, was large. We speculate that differences among judges' scores result from different applications of the scoring system and inadequate instructions. For example, some judges report starting with the total possible points and subtracting for errors. Other judges begin with no points and add points for what is produced. Yet other judges may use one approach or the other, depending on the quality and quantity of the subject's production. The WAB directions for scoring do not specify which approach to use with whom or when.

Finally, statistically acceptable classification and scoring reliability may not be adequate for clinical purposes. Our significant agreement and that of Shewan and Kertesz (1980) do not prevent our mistaking differences among clinicians as differences within or among patients.

REFERENCES

Reliability of Writing and Drawing Performance

